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Predictability and Prediction

*Land states (hamely soil moisture™) can provide predictability
in the window between deterministic (weather) and climate
(O-A) time scales.
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Predictability and Prediction

*Land states (namely soil moisture*) can provide predictability
in the window between deterministic (weather) and climate
(O-A) time scales.
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Predictability and Prediction

*Land states (hamely soil moisture™) can provide predictability
in the window between deterministic (weather) and climate
(O-A) time scales. /

* To have an effect,
there must exist:

1. Memory of initial
land states

2. Sensitivity of fluxes
to land states,
atmosphere to fluxes

3. Sufficient variability

Predictability
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L-A feedback stands on 2 legs

AP => ASM — AFluxes — APBL -~ AP

Y

\Feedback path: Terrestrialleg = Atmospheric leg

)

SM—ERSH ET—P SH—-P
Arid mid Arid Humid Arid mid
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L-A feedback stands on 2 legs
AP => ASM — AFluxes - APBL -~ AP

Y

Feedback path: Terrestrial leg = Atmospheric leg

SM—ERSH ET—-P SH-P
Arid mid Arid Humid Arid mid

e Terrestrial — When/where does soil moisture (vegetation,
snow, etc.) control the partitioning of net radiation into
sensible and latent heat fluxes?
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L-A feedback stands on 2 legs
AP => ASM — AFluxes — APBL - AP

'

Feedback path: Terrestrial leg = Atmospheric leg

SM—ERSH ET—-P SH-P
Arid mid Arid Humid Arid mid

e Terrestrial — When/where does soil moisture (vegetation,

snow, etc.) control the partitioning of net radiation into
sensible and latent heat fluxes?

e Atmosphere — When/where do surface fluxes significantly
affect boundary layer growth, clouds and precipitation?
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Observations used

e AmeriFlux standardized Level 2 data
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Observations used

e AmeriFlux standardized Level 2 data

— “Surface soil moisture” measurements
vary in depth between stations from
2.5 cm to a 0-30cm average.
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Observations used

e AmeriFlux standardized Level 2 data

— “Surface soil moisture” measurements
vary in depth between stations from
2.5 cm to a 0-30cm average.

— Sensible and latent heat flux (eddy
covariance) measurements taken from

2.5m-70m aloft, depending on site.
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Observations used

e AmeriFlux standardized Level 2 data

— “Surface soil moisture” measurements
vary in depth between stations from
2.5 cm to a 0-30cm average.

— Sensible and latent heat flux (eddy
covariance) measurements taken from

2.5m-70m aloft, depending on site.

— All data averaged to daily (missing if <36 half-hourly reports
are present for fluxes, <10 for soil moisture).
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Observations used

e AmeriFlux standardized Level 2 data

— “Surface soil moisture” measurements
vary in depth between stations from
2.5 cm to a 0-30cm average.
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— Sensible and latent heat flux (eddy
covariance) measurements taken from
2.5m-70m aloft, depending on site.

— All data averaged to daily (missing if <36 half-hourly reports
are present for fluxes, <10 for soil moisture).

— Station must have >100 daily reports during JJA to be

: : : _
included in the analysis. om M assass
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Models / data used

“Offline” Land model Atmospheric Reanalyses Free-running GCMs

simulations (constrained by DA) (unconstrained)
Global Land Data

Coupled Forecast System  CFS Seasonal Forecasts

E Iﬁ;??;;ﬁ'::;:ﬁzzg Reanalysis (JJAS) initialized from
Py Ali dded CFSv2 AGCM CFSR
tuz.')' observatlgonal forcing Noah2.7 land model Noah2.7 land model
o s 0.31°x0.37° (T126) 0.94°x0.95°
1°x1
S~
e - MERRA-Land MERRA GEOS5 “AMIP”
g ~«| Catchmentland model GEOS5 AGCM Simulation
< g MERRA + GPCP forcing  Catchment land model Catchment land model
= 0.67°x0.5° 0.67°x0.5° 0.67°x0.5°

GEOQOSS data courtesy: Mike Bosilovich

~30 years for each, covering ~1980s-2000s
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Surface soil moisture memory

JUA 7—day Lagged Autocorrelation of Surface Soil Moisture
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e All versions have shorter memory than AmeriFlux

— CFS has strongest bias & RMSE — most influenced by AGCM

— CFSR has lowest bias & RMSE
— Large errors for all at individual stations

* There are consistency issues (depth of measurements, point vs grid scgle)
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GSFC Surface soil moisture memory

JJA 7—day Lagged Autocorrelation of Surface Soil Moisture
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* For contrast: MERRA/GEQOSS has longer memory than AmeriFlux
— Very similar pattern to GLDAS/CFSR/CFS over CONUS

— Lack of memory over Great Plains “hot spot” in both is a general issue for
predictability!
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Root zone soil moisture memory

JUA 7/—day Lagged Autocorrelo’uon of Layer 2 Soil Moisture

- RMSE: 0.24 . RMSE: 0.24
O Bias: 0.12 W & O Bias: 0.04

0.4 0.5 0.6 0.7 0.8 0.9

* Al NCEP versions have longer memory than AmeriFlux
— GLDAS closest to observations; CFSR largest bias

—~ RMSE: 0.2
Y Bias: 0.02

— Depth of measurements may be a significant factor (25cm vs 10-15)
— Large errors for all at individual stations is a more serious factor....
— “Hole” over Great Plains is less evident
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GSFC Root zone soil moisture memory

JJA 7—day Lagged Autocorrelation of Layer 2 Soil Moisture
" '
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e NASA models maintain that “hole” over Great Plains
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1 to 21 day lagged ACC at 46 stations
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1 to 21 day lagged ACC at 46 stations
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1 to 21 day lagged ACC at 46 stations
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* Consistent with finding of O
Dirmeyer (2013; CFSv2 Special %
Issue) showing CFS reforecast —

precip is too noisy, loses its
correlation with ICs too quickly.
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1 to 21 day lagged ACC at 46 stations
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1 to 21 day lagged ACC at 46 stations
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What about that hole?

* |In GLACE2 we saw that
realistic soil moisture
initialization improved T,
forecast skill, especially over
North America, but not over

the ”h()t Spot” [B] Lead: 2 Month\s\,\

0.1 0145 0.2 0.25 0.3 0.35
* Figure is for COLA GCM, but conclusion was true for

multi-model results as well (Koster et al. 2010).

r? Difference for Tair

Koster, R., et al., 2010: Geophys. Res. Lett., 37, L02402,
doi:10.1029/2009GL041677.
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Soil moisture — temperature coupling

* Coupling strength in fg, 3 < o~
COLA GCM (this is for % %
temperature; hot spot :
extends further west =
than for precipitation). § -

* Area [B] has strong T “'“\&b_'n,

. —1 | July I = =
coupling strength. Why = ————————
No Skl” there? 0.4 0.5 0.6 0.7 0.8 0.9
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Initial soil moisture quality

* Compared to GLDAS,

the initial soil moisture
states are pretty good

over the US (COLA ICs
from an offline SSiB run

in style of GSWP-2).

* |nitialization does not
appear to be the
problem.
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Soil moisture forecast skill

e However, the skill of
soil moisture forecasts
over the hot spot
evaporates before two
months pass.

r* Difference for SM

What is happening?

Lead: 2 Monthk\

02 0.25 0.3 0.35 0.45

* Remember our key
predictability
ingredients: coupling, variability and memory

P
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Low soil moisture memory
SM Memory (GLDAS)

<J

 As we saw, there

seems to be weak soil
moisture memory

over the hot spot.

* On the other hand,
memory Is very strong
over the west during  |may — July
summet.
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An ingredient is missing

*Land states (hamely soil moisture™) can provide predictability
in the window between deterministic (weather) and climate
(O-A) time scales. /

* To have an effect,
there must exist:

1. Memory of initial
land states

2. Sensitivity of fluxes
to land states,
atmosphere to fluxes

3. Sufficient variability

Predictability

~10 days ~2 months
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|ICs versus memory

Spatial Correlation (CONUS)

* Early in seasonal forecasts,
the pattern of soil moisture .
forecast skill looks like the
pattern of initial soil
moisture quality — reflects
on the quality of LDAS. M e s e

Lead Time (Days)

SM IC)

O

oo

o
1

Corr. (r%., r
(@]
~J
(&)

0.7

Corr. (r’u, SM Memory)

* Astime goes on, the skill pattern begins to resemble
soil moisture memory. And temperature skill follows

soil moisture skill in summer.
Guo, Z., and P. A. Dirmeyer, 2014: Impacts of soil moisture initialization COLA I /DG EOR

on subseasonal forecast skill. Geophys. Res. Lett., (submitted).
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Conclusions

* Many models have difficulty reproducing observed

patterns and strength of soil moisture memory,
particularly an anomalous “hole” over the central US.
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Conclusions

* Many models have difficulty reproducing observed

patterns and strength of soil moisture memory,
particularly an anomalous “hole” over the central US.

* Coupling and data assimilation affect memory; not
just a land model problem.
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Conclusions

* Many models have difficulty reproducing observed

patterns and strength of soil moisture memory,
particularly an anomalous “hole” over the central US.

* Coupling and data assimilation affect memory; not
just a land model problem.

* Prediction experiments have shown initial land states
can improve subseasonal forecasts, but under-
representation of observed memory may be a barrier
to realizing predictability as forecast skill.
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To do:

 Add SCAN, other soil moisture data to analysis of
memory to increase density (US), coverage (global).

* Quantify the effect of spatial scale on these
estimates (can be accomplished with observational
soil moisture data only).

* Expand to coupling metrics (soil moisture / surface
flux / atmospheric state relationships)

 “Confront” models with these metrics [GEWEX]
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